OKLAHOMASTATEXNVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems
Spring 2001
Midterm Exam \#2

DO ALL FIVE PROBLEMS

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

If u_{1} and u_{2} are linearly independent of each other, and $w_{1}=a u_{1}+b u_{2}, w_{2}=c u_{1}+d u_{2}$, please derive the relationship among $\{a, b, c, d\}$ such that w_{1} and w_{2} are linearly independent of each other.

Problem 2:

Consider the linear operator

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
2 & 4 & -2 & 0 \\
1 & 2 & -1 & 0
\end{array}\right],
$$

determine its rank and nullity, then find a basis for the range space and the null space of the linear operator, A, respectively ?

Problem 3:

Consider the subspace of \mathfrak{R}^{4} consisting of all 4×1 column vector $x=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$ with $x_{1}+x_{2}+x_{3}=0$. Extend the following set to form a basis for the space:
$\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right]$.

Problem 4:

Extend the set
$\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 4\end{array}\right]$
to form a basis in $\left(\mathfrak{R}^{4}, \mathfrak{R}\right)$.

Problem 5:

Let

$$
V^{\perp}=\operatorname{Span}\left(\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right],\left[\begin{array}{cc}
-5 & 1 \\
1 & 5
\end{array}\right],\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right]\right),
$$

determine the original space, V. For $x=\left[\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right]$, find its direct sum representation of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in V$, and $x_{2} \in V^{\perp}$ (I.e., the direct sum of spaces V and V^{\perp} is the set of all 2×2 matrics with real coefficients).

